Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke.
نویسندگان
چکیده
BACKGROUND AND PURPOSE In acute ischemic stroke, the hypoperfused but viable tissue is the main therapeutic target. In clinical routine, time-to-peak (TTP) maps are frequently used to estimate the hemodynamic compromise and to calculate the mismatch volume. We evaluated the accuracy of TTP maps to identify penumbral flow by comparison with positron emission tomography (PET). METHODS Magnetic resonance imaging (MRI) and PET were performed in 11 patients with acute ischemic stroke (median 8 hours after stroke onset, 60 minutes between MRI and PET imaging). The volumes defined by increasing TTP thresholds (relative TTP delay of >2, >4, >6, >8, and >10 seconds) were compared with the volume of hypoperfusion (<20 mL/100 g per min) assessed by 15O-water PET. In a volumetric analysis, each threshold's sensitivity, specificity, and predictive values were calculated. RESULTS The median hypoperfusion volume was 34.5 cm3. Low TTP thresholds included large parts of the hypoperfused but also large parts of normoperfused tissue (median sensitivity/specificity: 93%/60% for TTP >2) and vice versa (50%/91% for TTP >10). TTP >4 seconds best identifies hypoperfusion (84%/77%). The positive predictive values increased with the size of hypoperfusion. CONCLUSIONS This first comparison of quantitative PET-CBF with TTP maps in acute ischemic human stroke indicates that the TTP threshold is crucial to reliably identify the tissue at risk; TTP >4 seconds best identifies penumbral flow; and TTP maps overestimate the extent of true hemodynamic compromise depending on the size of ischemia. Only if methodological restrictions are kept in mind, relative TTP maps are suitable to estimate the mismatch volume.
منابع مشابه
MRI perfusion maps in acute stroke validated with 15O-water positron emission tomography.
BACKGROUND AND PURPOSE Perfusion-weighted imaging maps are used to identify hypoperfusion in acute ischemic stroke. We evaluated maps of cerebral blood flow (CBF), cerebral blood volume, mean transit time, and time to peak (TTP) in acute stroke by comparison with positron emission tomography. METHODS Perfusion-weighted imaging and positron emission tomography were performed in 26 patients wit...
متن کاملA simple positron emission tomography-based calibration for perfusion-weighted magnetic resonance maps to optimize penumbral flow detection in acute stroke.
BACKGROUND AND PURPOSE Perfusion-weighted (PW) MRI is increasingly used to identify the tissue at risk. The adequate PW-MRI map and threshold remain controversial due to a considerable individual variation of values. By comparative positron emission tomography, we evaluated a simple MR-based and positron emission tomography-validated calibration of PW maps. METHODS PW-MRI and quantitative pos...
متن کاملMaps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography.
BACKGROUND AND PURPOSE Perfusion-weighted imaging-derived maps of time-to-maximum (Tmax) are increasingly used to identify the tissue at risk in clinical stroke studies (eg, DEFUSE and EPITHET). Using quantitative positron emission tomography (PET), we evaluated Tmax to define the penumbral flow threshold in stroke patients and compared its performance to nondeconvolved time-to-peak (TTP) maps....
متن کاملInfluence of the arterial input function on absolute and relative perfusion-weighted imaging penumbral flow detection: a validation with ¹⁵O-water positron emission tomography.
BACKGROUND AND PURPOSE Perfusion-weighted imaging maps are used to identify critical hypoperfusion in acute stroke. However, quantification of perfusion may depend on the choice of the arterial input function (AIF). Using quantitative positron emission tomography we evaluated the influence of the AIF location on maps of absolute and relative perfusion-weighted imaging to detect penumbral flow (...
متن کاملInfluence of the Arterial Input Function on Absolute and Relative Perfusion-Weighted Imaging Penumbral Flow Detection
Background and Purpose—Perfusion-weighted imaging maps are used to identify critical hypoperfusion in acute stroke. However, quantification of perfusion may depend on the choice of the arterial input function (AIF). Using quantitative positron emission tomography we evaluated the influence of the AIF location on maps of absolute and relative perfusion-weighted imaging to detect penumbral flow (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2004